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(nln2n3n4nsn6) can be written as 

h = nt + n 4 -  n5 

k = n2 + n4 + n5 
(17) 

It = n 3 "31- n6 

12 = --2n 3 -- n6. 

Previously the diffraction spots of  the o-' phase were 
indexed on the bases of  the incommensura te  com- 
posite structure (Cheng et al., 1991). After carefully 
analyzing the s imulated and experimental  EDPs of  
the tr' phase,  the sublattice parameter  of  substructure 
II along the c direction should be doubled  to c2= 
7.42/~. Thus,  the four indices hklll 2 based on a 
phason-defected 1D quasicrystal  are coincident  with 
those based on the 1D incommensura te  composi te  
structure. This confirms once again that the descrip- 
tion proposed in the present paper  is equivalent  to 
the regular description. 

In pr incipal ,  such a description is general ly 
appl icable  for all 1D incommensura te  composi te  
crystals. 

As a conclusion,  the incommensura te  composi te  o-' 
phase is described as the intermediate  state between 
a fictitious 1D tetragonal quasicrystal and  the com- 
mensurate  o- phase. In other words, the incommensu-  
rate o-' phase  and commensura te  o- phase can be 
treated as a phason -de fec t ed  1D quasicrystal  
a l though the 1D quasicrystal  is fictitious and has not 
been found in the A1-Cu-Fe  alloy thus far. This 
implies that  the incommensura te  composite structure 

that shows two independen t  periodicit ies along the 
same direction may have some inherent  relation with 
quasiperiodicity.  

YFC thanks Professor Renhui  Wang and Dr J G 
Wen for useful discussions. 
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Abstract 
A homogeneous  distr ibution of  SiO2 precipitates 
in Czochralski-grown silicon containing different 
amounts  of  oxygen were produced by annea l ing  the 
dislocation-free crystals at 1023 K. The resulting long- 
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range strain field modifies the integrated reflecting 
power R of  the Bragg reflections measured  on an 
absolute scale with 316 keV y-radiat ion.  The thick- 
ness dependence  of  R has been model led  using the 
results of  statistical dynamica l  theory. The assump- 
tion made  in Kato 's  original theory, where the correla- 
tion length F for the wave-field ampli tudes  is propor- 
tional to the extinction length, has to be abandoned .  

© 1992 International Union of Crystallography 
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Recent modifications to statistical dynamical theory 
by Becker & A1 Haddad [Acta Cryst. (1990). A46, 
123-139] lead to excellent agreement with the present 
experimental results. Furthermore, in the present 
case, the correlation length z, describing short-range 
correlation in the fluctuations of the phase factor 
caused by the displacement field of the defects, turns 
out to be very small, so that the contribution of the 
mixed term to the integrated reflecting power could 
be neglected. Therefore, the defect scattering is 
characterized by the static Debye-Waller factor alone, 
which was determined accurately from the thickness 
dependence of the measured integrated reflecting 
power. From the ratio of the static" Debye-Waller 
factors determined for different orders of reflection, 
the sizes of the SiO2 precipitates have been calculated 
and the results are in very good agreement with the 
values determined directly from small-angle neutron 
scattering on the same samples. 

Introduction 

in X-ray crystal structure analysis, the electron charge 
density is, in general, deduced from the integrated 
intensities measured at a large number of Bragg reflec- 
tions. This approach is straightforward in cases of 
weak scattering. After correction for normal absorp- 
tion, one assumes that each atom in the crystal con- 
tributes equally to the scattered intensity and that 
multiple-scattering events are negligible, i.e. the 
diffraction data are interpreted within the kinematical 
theory. In most practical cases, however, these 
assumptions do not hold and the measured integrated 
intensity is smaller than the value expected from 
kinematical theory; the difference is called extinction. 
The search for the best possible correction of this 
effect has been an active field of research in crystal- 
lography since the early days of X-ray diffraction. 

Any extinction correction needs a model to describe 
the defect structure of the actual sample in a statistical 
way. The mosaic model first suggested by Darwin 
(1922) has been the most successful so far. In this 
highly simplified model the imperfect crystal of thick- 
ness To is assumed to be an aggregate of a large 
number of independently scattering plane-parallel 
perfect crystal blocks of thickness to<< To, tilted at 
small angles to each other. Their angular distribution 
is described by the mosaic distribution function, typi- 
cally of Gaussian shape. There is a finite probability 
for the intensity scattered in one block to be scattered 
again in another block with identical lattice-plane 
orientation. This probability will increase with 
increasing sample thickness and decreasing mosaic 
spread. The rescattering of the Bragg-diffracted 
intensity leads to a reduction of the integrated reflect- 
ing power compared with the value expected from 
kinematical theory. The effect is called secondary 

extinction and is due to energy conservation during 
the scattering process. It is taken into account by 
solving Darwin's energy-coupling equations between 
incident and diffracted beams, which are the basis of 
most extinction correction schemes developed so far. 
A general solution of these equations is difficult 
because of the boundary conditions imposed by the 
sample and the mosaic blocks. 

In a semi-infinite perfect crystal of plane-parallel- 
plate shape, the diffraction is rigorously described by 
dynamical theory, where the coherent interaction of 
all waves propagating in the crystal is taken into 
account; see, for example, Zachariasen (1945). In the 
limit of very thin crystals, the results obtained from 
dynamical theory are identical with those calculated 
from kinematical diffraction theory. In dynamical 
theory, a crystal is considered thin if its thickness is 
smaller than about half an extinction length A, which 
is inversely proportional to the wavelength and the 
structure factor. For 1 A X-rays, a typical value of 
the extinction length is A = 10 I~m. In perfect crystals 
with thicknesses of the order of an extinction length 
or larger, the integrated reflecting power is smaller 
than the value expected from kinematical theory. The 
difference is called primary extinction. In real crystals, 
perfect regions can easily reach dimensions of the 
order of 10 vLm and therefore both contributions to 
extintion may become significant. It is the coexistence 
of primary and secondary extinction, i.e. of intensity 
and amplitude coupling in the diffraction process in 
real crystals, that complicated the development of 
extinction corrections in the past. 

The conventional approach used to treat secondary 
extinction was developed by Hamilton (1957) and 
Zachariasen (1967a, b); empirical improvements 
have been suggested by Cooper & Rouse (1970). For 
plane-parallel crystal slabs Werner & Arrot (1965) 
and Werner, Arrot, King & Kendrick (1966) presented 
solutions of Darwin's energy-transfer equations for 
both Laue and Bragg geometry. Zigan (1970) dis- 
cussed a formal solution for convex bound crystals. 
In crystallography, the most widely used extinction 
correction is due to Becker & Coppens (1974, 1975). 
Starting from the Tagaki-Taupin equations (Taupin, 
1964; Tagaki, 1962, 1969) for a distorted crystal, Kato 
(1975, 1976) developed a dynamical approach to treat 
extinction that is not based on Darwin's energy- 
transfer equations and that covers mathematically the 
whole range from amplitude coupling in a perfect 
crystal to intensity coupling in a highly distorted 
crystal. The various theoretical schemes to correct for 
extinction developed up to 1977 have been reviewed 
by Becker (1977). 

More recently, Sabine (1988) showed that the 
various extinction corrections derived on the basis 
of Darwin's mosaic-model and energy-transfer 
equations make closely similar predictions when 
identical functional forms for the coupling constant 
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in the transfer equations are used. Kulda 
(1987, 1988a) developed an extinction correction 
based on a random elastic-deformation model, where 
the imperfect crystal is supposed to consist of a 
stochastic ensemble of elastically deformed domains 
instead of the perfect mosaic blocks in Darwin's 
model. This model is more flexible and allows for a 
more realistic description of the coherent part of the 
wave interaction in imperfect crystals, i.e. a more 
realistic treatment of primary extinction. The 
approach has been tested and compared with the 
performance of the Becker-Coppens extinction cor- 
rection (Becker & Coppers, 1974, 1975) using neutron 
diffraction data from steady-state reactors (Kulda, 
1988b) and from pulsed neutron spallation sources 
(Jauch, Schultz & Schneider, 1989). The effect of the 
applied extinction correction on the calculated ther- 
mal parameters has been considered, in particular for 
variations introduced by reducing the size of the 
refined data set. In addition, the values of the mosaic- 
spread parameter obtained from the various 
refinements have been compared with the results from 
high-resolution y-ray rocking-curve measurements 
performed on the sample studied with spallation- 
source neutrons. 

Suortti (1982a) suggested a scheme to determine 
secondary extinction within Darwin's mosaic model 
from an analysis of the diffraction pattern measured 
on an absolute scale and the extrapolation to negli- 
gible primary extinction by varying wavelength and 
polarization- the factors that determine the ampli- 
tude coupling between coherent waves. The technique 
was tested on a parallel-sided crystal slab of beryllium 
using polarized Cu Kt~ and unpolarized Mo Ka radi- 
ations (Suortti, 1982b). All aspects of extinction cor- 
rections are much easier to handle if the diffraction 
experiments can be performed with y-radiation with 
wavelengths of the order of 0.04A, (Schneider, 
Hansen & Kretschmer, 1981; Hansen, Schneider & 
Larsen, 1984). If the dimensions of the sample are 
smaller than the extinction length of the strongest 
reflection for the wavelength used in the experiment, 
i.e. of the order of 1 or 10 I~m, extinction is negligible 
(Bachmann, Kohler, Schulz & Weber, 1985; Hfche, 
Schulz, Weber, Belzner, Wolf & Wulf, 1986). The 
potential of the extrapolation of data measured on a 
given sample to the limit of 'zero extinction' has been 
discussed in a series of papers (Mathieson, 1977a; 
Lawrence & Mathieson, 1977; Mathieson, 1977b, 
1979). 

In 1980, Kato published two fundamental papers 
on the statistical dynamical theory of crystal diffrac- 
tion (Kato, 1980a, b), which are extensions of his 
earlier papers on extinction (Kato, 1976). Here, the 
integrated reflecting power is given as a sum of a 
coherent term, Rcoh, which is closely related to the 
expression obtained from dynamical theory for per- 
fect crystals, an incoherent term, Rin¢, and a mixed 

term, Rmi x : 

Realc -- Rcoh + Rmix + Rinc. (1) 

The degree of perfection of the crystal is described 
by a parameter E for long-range correlation and an 
effective correlation length re for short-range correla- 
tion. The latter depends on the correlation length F 
for the wave-field amplitudes and the short-range 
correlation length r for the phase factor 

~o(r) = exp [2 ~rin.  u(r)], (2a) 

with u(r) representing the local displacement field 
and H the reciprocal-lattice vector. E is equal to the 
space average of the phase factor 

E = (~p(r)),, (2b) 

which is identical with the definition of the static 
Debye-Waller factor. Kato assumes that F is propor- 
tional to the ratio of the extinction length A, defined 
by (6a) later in this paper, and E. F is thus 
wavelength-dependent and is considered to be much 
larger than r. A number of experiments have been 
performed to test Kato's statistical dynamical theory 
or to gain information on the defect structure in real 
crystals applying the theory as it stands. 

Using thermal neutrons, the integrated reflecting 
power has been measured as a function of wavelength 
in Laue geometry on a high-quality Y3FesO~2 (YIG) 
crystal for both polarization states of the sample. 
Pendellrsung oscillations have been observed for both 
polarization states that qualitatively agree with the 
predictions made using the dynamical theory for per- 
fect crystals (Baruchel, Guigay, Mazur&Espejo, 
Schlenker & Schweitzer, 1982; Guigay, Schlenker & 
Baruchel, 1982). Concerning the flipping ratio, there 
is a marked difference between experiment and 
dynamical theory, however, after fitting the param- 
eters E and r; Kato's statistical dynamical theory 
describes the experimental data well. 

Pendellrsung oscillations were first studied with 
X-rays by Kato & Lang (1959) on wedge-shaped 
perfect silicon crystals. Using thermal neutrons, 
Sippel, Kleinstiick & Schulze (1965) measured in 
Laue geometry the integrated reflecting power as a 
function of the thickness of plane-parallel crystal 
slabs. With an initial thickness of 204 jxm, the silicon 
wafer was successively etched down to a thickness of 
6 I~m and the theoretically predicted Pendellrsung 
oscillations were observed. These oscillations can be 
measured more easily by tilting the sample around 
the reciprocal-lattice vector so that the effective 
sample thickness in the experiment varies. This tech- 
nique was suggested by Lawrence & Mathieson (1977) 
and may be called the inclination method. It was first 
applied in neutron diffraction, where Pendellrsung 
oscillations have been observed in this way on a 
sufficiently perfect Ge single crystal (Somenkov, 
Shilstein, Belova & Utemisov, 1978). Measurements 
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of the same kind were performed on silicon single- 
crystal wafers with dislocation densities up to 
100 mm -2 and on wafers with dislocation densities 
above 5000mm -2 (Olekhnovich, Karpei, Olekhno- 
vich & Puzenkova, 1983). Olekhnovich et al. find the 
extinction corrections based on Darwin's energy- 
transfer equations unsuitable to describe their 
experimental data. The results from the low-disloca- 
tion-density wafers can be approached using Kato's 
statistical dynamical theory (Kato, 1980a, b). Since 
the incoherent and mixed terms in Kato's expression 
turn out to be small, Olekhnovich et aL assumed that 
only the coherent component can be affected sig- 
nificantly by anomalous scattering and absorption 
and they applied a correction scheme due to Kato 
(1968). However, there is still a marked difference 
between the experimental data and the best fit 
obtained with Kato's theory. The data taken at the 
high-dislocation-density wafers cannot be explained, 
even qualitatively, using Kato's statistical dynamical 
theory (Kato, 1980a, b). 

Oscillations of the integrated intensity with respect 
to sample thickness and the anomalous transmission 
of plane-polarized Mo Ka radiation have been 
studied on dislocation-free silicon crystals containing 
oxygen by Olekhnovich & Karpei (1984). They con- 
sider only coherent and incoherent components of 
the integrated reflectivity and, from measurements at 
different orders of reflection, they estimate the type 
and the size of the defects. Kato's theory has been 
applied to determine the concentration and the mean 
size of microdefects in silicon crystals from Pendel- 
16sung oscillations measured with tr-polarized 
Mo Kc~ radiation (polarization factor C -- 1) by using 
the inclination method on as-grown samples with 
oxygen concentrations in the range 1016-10 TM O 
atoms cm -3 (Voronkov, Chukhovskii & Piskunov, 
1985; Voronkov, Piskunov, Chukhovskii & 
Maksimov, 1987). From their analysis, Voronkov et 
al. (1985, 1987) claim the existence of microdefects 
with an average radius of the order of 70 A and a 
concentration of about 1013 c m  -3 in their as-grown 
silicon crystal containing 10 TM O atoms c m  -3. The 
observed variation of the correlation length r with 
tilt angle is interpreted as an indication of some 
anisotropic nature of the displacement field of the 
defects. 

Sugita, Sugiyama, Iida & Kawata (1987) took sec- 
tion topographs from 420 p.m thick silicon wafers 
containing 1.15 x 10 TM O atoms c m  -3. The intensity 
distribution measured on a sample that had been 
annealed for 12 h at 1223 K was fitted with Kato's 
statistical dynamical theory and static Debye-Waller 
factors were determined for seven different reflec- 
tions. They clearly show the expected dependence on 
the square of the scattering vector. In a subsequent 
paper, Iida, Sugiyama, Sugita & Kawata (1988) report 
investigations of seven Si samples that had been 

annealed at 1073 K for times varying between 50 and 
1000 h. In a second series of measurements, samples 
were annealed for 100 h at six different temperatures 
between 923 and 1173 K. Again, static Debye-Waller 
factors have been determined by fitting Kato's theory 
to the intensity distribution measured in section topo- 
graphs. Referring to theoretical work by Dederichs 
(1973), Iida et al. (1988) determine the size and the 
number density of the oxygen precipitates. 

As shown for the first time in a neutron diffraction 
study on highly perfect silicon crystals, Pendell6sung 
oscillations can be measured with high accuracy by 
varying the wavelength of the diffracted radiation 
(Shull, 1968; Shull & Oberteuffer, 1972). Takama, 
Harima & Sato (1990) measured PendeU6sung 
intensity beats with white X-radiation (0.15<A < 
0.8A.) on parallel-sided heat-treated Czochralski- 
grown silicon wafers using a solid-state detector. The 
technique has been described in detail by Takama, 
Iwasaki & Sato (1980) and Takama, Noto, 
Kobayashi & Sato (1983). Defects have been intro- 
duced by heating the 0.5 mm thick wafers in an argon 
atmosphere for times varying between 24 and 100 h 
at temperatures in the range from 1123 to 1273 K. 
The experimental data measured for different orders 
of reflections have been analysed with Kato's statis- 
tical dynamical theory and good agreement was found 
if the correlation length F for the wave-field ampli- 
tudes is treated as an additional independent fitting 
parameter. It turns out that the two correlation lengths 
r and F are of the same order of magnitude, approxi- 
mately 0.5 ~m, which is in contrast to the original 
assumption made by Kato (1980a, b). 

Stimulated by the experimental evidence of prob- 
lems existing within the statistical dynamical theory, 
a number of authors have made improvements on 
Kato's original approach. Guigay (1989) derived the 
expressions for the integrated intensities from transfer 
equations requiring simpler mathematics and he 
found two errors in the original formulae for the 
mixed term of the integrated reflecting power. These 
findings are in agreement with the results obtained 
by AI Haddad & Becker (1988), who revised Kato's 
original treatment and compared their modified 
results with the experimental Pendell6sung data from 
silicon single crystals containing dislocations 
(Olekhnovich et al., 1983). The modified theory 
describes the experimental data much better than 
Kato's expressions; a variation of the correlation 
length F for the wave-field amplitudes improves the 
statistical agreement factor for the fit only slightly. 
In a subsequent paper, Becker & A1 Haddad (1989a) 
showed that, in contrast to Kato's assumption, the 
correlation'length F varies within the sample and is 
of the same order of magnitude as the correlation 
length ~" for the phase factor. 

To establish a fruitful interplay between experiment 
and further theoretical development of statistical 
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dynamical theory, experiments should probe the 
different aspects of the theory in a selective way and 
should be performed on samples with well character- 
ized homogeneously distributed defects. The meas- 
urement of PendelliSsung oscillations on annealed 
Czochralski-grown silicon single crystals by means 
of the inclination method and 316.5keV y-radia- 
tion is an experiment of that category. Because of 
its technological importance, the defect structure 
created by annealing of Czochralski-grown silicon 
single crystals containing about 20 O atoms in 106 at 
temperatures between 873 and 1573K has been 
studied extensively by combining different techniques 
such as infrared spectroscopy and chemical etching 
coupled with optical microscopy (Livingston, 
Messoloras, Newman, Pike, Stewart, Binns, Brown 
& Wilkes, 1984), as well as by a variety of diffraction 
techniques such as electron microscopy (Bourret, 
1987), small-angle neutron scattering (Bergholz, 
Binns, Booker, Hutchison, Kinder, Messoloras, New- 
man, Stewart & Wilkes, 1989), X-ray topography 
(Patel & Authier, 1975; Partanen & Tuomi, 1990), 
X-ray anomalous transmission (Patel & Batterman, 
1963), T-ray diffractometry (Kurbakov, Rubinova, 
Sobolev, Trunov & Shek, 1986), neutron back- 
scattering (Magerl, Schneider & Zulehner, 1990), 
X-ray diffuse scattering (Patel, 1975; Dietrich & 
Zaumseil, 1985; Stojanoff, Pimentel, Bulla, Castro, 
Hahn & Ponce, 1986) and, recently, by diffraction 
of high-energy synchrotron radiation (Schneider, 
Nagasawa, Liss, Magerl & Zulehner, 1991). In the 
context of the present paper, it is emphasized that 
investigations with T-rays, neutrons and high-energy 
synchrotron radiation can be performed on the same 
sample. PendelliJsung measurements with 316.5 keV 
T-radiation probe the basic concepts of statistical 
dynamical theory since absorption is very weak, 
anomalous dispersion does not occur and, owing to 
the small Bragg angles of typically 1 °, the diffraction 
geometry is quasi-one-dimensional and polarization 
effects can be neglected. At present, theoretical efforts 
are being made to understand the role of the correla- 
tion length F for the wave-field amplitudes and to 
develop more appropriate expressions for it (Becker 
& A1 Haddad, 1989a, b, 1990). As mentioned above, 
Kato assumes F to be proportional to A/E. If this 
assumption is wrong, a ),-ray experiment should 
reveal it clearly, because here the extinction length 
is larger by a factor of 40 than for the case of Cu Ka 
radiation. Therefore, the T-ray Pendell6sung data 
should allow for a stringent test of the reliability of 
suggested new expressions for F. 

The outline of this paper is as follows. Firstly, the 
technique of measuring Pendell6sung intensity beats 
in large silicon single crystals using 316.5 keV y-radi- 
ation is described, followed by a discussion of the 
origin of its sensitivity to weak diffuse scattering from 
point defects. Secondly, the mechanism of the forma- 

tion of oxygen precipitates in dislocation-free silicon 
at temperatures around 1023 K and of dislocation 
loops and/or  stacking faults at temperatures above 
1173 K is described with emphasis on the expected 
homogeneity of the distribution of these defects in 
the crystal. Thirdly, the expressions for the integrated 
reflecting power as given by Kato (1980a, b) in his 
original papers, by Guigay (1989) and by Becker & 
A1 Haddad (1989b, 1990) are presented. They are 
applied to fit the T-ray PendelliJsung data, which were 
taken in two groups of samples containing 7.5 x 1017 
and 18 x 1017 O atoms cm -3, respectively. The relative 
success of the various fits to these data represents the 
basis for the concluding discussion on the present 
state of the statistical dynamical theory of diffraction. 

v-ray Pendelli~sung intensity beat measurements 

In the angular range in which Bragg diffraction 
occurs, a monochromatic X-ray beam excites in a 
perfect crystal two interfering wave fields with 
different wave vectors defined by the branches of the 
dispersion surface for each polarization state. This 
difference is much smaller than the length of the wave 
vectors. In Laue (transmission) geometry, it leads to 
oscillations of the intensity of the diffracted beam as 
a function of sample thickness. The period of these 
oscillations is called the PendelliJsung length and is 
of the order of 1 mm for diffraction of 316.5 keV 
T-radiation at low-order reflections of silicon. The 
measurement of such PendelliJsung oscillations on an 
absolute scale is straightforward with T-radiation 
because absorption is as weak as in neutron diffrac- 
tion, so that samples of thickness of the order of I cm 
can be studied by means of the inclination technique. 
The thickness of such crystals can be measured very 
accurately. No anomalous dispersion occurs and, 
because of the small Bragg angles, the difference in 
the diffraction process for the two polarization states 
is extremely small and can be neglected in most cases. 
The half-life of the 192Ir T-ray source is 74.2 d, so the 
data can be corrected accurately for time decay of 
the source. T-ray Pendell6sung intensity beats have 
been measured in highly perfect float-zone-grown 
silicon crystals to check the reliability of the Thomson 
cross section for the interaction with matter of T- 
radiation with energies in the range between 300 and 
460 keV (Graf & Schneider, 1986). In this way, the 
220 structure factor was measured with an accuracy 
of the order of +0.05% and the agreement with the 
results from X-ray PendelliSsung measurements is 
excellent. The experimental arrangement and the data 
analysis are described in detail by Graf & Schneider 
(1986). 

The experimental data are corrected for absorp- 
tion using the linear absorption coefficient /Zo = 
0.25(2) cm -~ measured with 0.0392/~ T-radiation 
(Graf & Schneider, 1986). They can then be compared 
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with theoretical quantities derived for zero absorp- 
tion. In the context of the present paper, the integrated 
reflecting power for a perfect plane-parallel single 
crystal in symmetrical Laue geometry is sufficiently 
well described by an expression given by De Marco 
& Weiss (1965) neglecting anomalous dispersion, 

RiJyn(A)=QTW(2A) with Q=A/[A 2sin (20B)], 

(3) 
where Q is the integrated reflecting power per unit 
volume in the kinematical limit. W(x) represents the 
Waller integral, 

1 

W(x)=~Jo(xp)dp=(1/x) i Jo(y) dy with y=xp, 
o o ( 4 )  

wh6ie Jo(xp) is the zeroth-order Bessel function of 
the first kind. W(x) tends to 1 for large arguments x. 
Hence, in the present geometry, the kinematical 
integrated reflecting power of a crystal of thickness 
To is equal to 

Rki n-- QT with T = T0/cos 0B, (5) 

A= T/A, (6a) 
A= Vce./[CXro[F]exp(-M)]= Text. (6b) 

The extinction length A is defined as the sample 
thickness corresponding to A = 1; the quantity A is 
thus a measure of the sample thickness in units of 
the extinction length. The polarization factor C may 
be put equal to unity since the Bragg angles are small 
in diffraction experiments with 0.0392/~ y-radiation. 
ro is the classical electron radius, F the structure 
factor, exp ( - M )  the thermal Debye-Waller factor 
and Vcell the volume of the unit cell. A represents the 
wavelength and 0B is the Bragg angle. 

If Pendell6sung oscillations are determined by 
means of the inclination technique (Lawrence & 
Mathieson, 1977), the effective sample thickness, 
Teer = T/cos ~b, is varied by tilting the crystal plate 
around the scattering voctor and the integrated reflect- 
ing power is measured for each tilt angle ¢. 

Annealed Czochralski-grown silicon crystals 

Dislocation-free silicon crystals used for the produc- 
tion of VLSI electronic devices are almost exclusively 
manufactured by means of the Czochralski (Cz) tech- 
nique. During crystal growth, the silica crucible partly 
dissolves into the silicon melt and, consequently, 
oxygen is incorporated into the growing crystal. Oxy- 
gen is the most important impurity in Cz silicon 
crystals, which typically contain between 5 x 1017 and 
1.5 x 10 TM O atoms cm -3, but only about 7.2 x 1012 C 
atoms cm -3. In the dissolved state these O atoms are 
located at interstitial sites of the silicon matrix, 
occupying distorted bond-centred positions. 

Upon heat treatment at temperatures above 823 K, 
O atoms diffuse through the lattice to produce small 
agglomerates that grow into precipitate particles of 
silica (SiO2). The tendency to form SiO2 precipitates 
depends strongly on the oxygen concentration, but 
also on the concentration of other impurities such as 
carbon. The precipitation of oxygen in dislocation- 
free silicon at 1023 K has been studied systematically 
by means of small-angle neutron scattering (SANS) 
(Messoloras, Schneider, Stewart & Zulehner, 1989; 
Gupta, Messoloras, Schneider, Stewart & Zulehner, 
1990). For example, after annealing for 216 h a sample 
with an oxygen content of 7.44x 1017 O atoms cm -3 
contained 8.Sx1011cm -3 plate-shaped SiO2 pre- 
cipitates of dimensions 500 x 500 x 50 A. 

The SiO2 p[ecipitates create strain in the disloca- 
tion-free silicon matrix, which gives rise to diffuse 
scattering. At temperatures above 1173 K, the silicon 
lattice becomes sufficiently soft that these strain fields 
can relax by emission of dislocation loops and/or  
self-interstitials, which subsequently agglomorate to 
stacking faults on {111} planes. These effects have 
been studied on large silicon crystals by high- 
resolution double-crystal y-ray diffractometry 
(Schneider, Gon~alves, Rollason, Bonse, Lauer & 
Zulehner, 1988) and more recently by using a three- 
crystal diffractometer and 150 keV synchroton 
radiation (Schneider, Nagasawa, Liss, Magerl & 
Zulehner, 1991). Complementary information on 
the defect scattering has been obtained from 
neutron back-scattering experiments performed on 
the same samples (Magerl et al., 1990; Liss, Magerl, 
Schneider & Zulehner, 1991). Because of the expec- 
ted statistical nature of the defects, Cz silicon crys- 
tals, heat treated at temperatures above 1273 K, have 
been used to test extinction models based on Dar- 
win's mosaic model (Schneider, Gon~alves & Graf, 
1988). 

In the present paper, [001] grown silicon crystals 
containing approximately 7.7 and 18 × 1017 O 
atoms cm -3 that have been annealed at 1043 and 
1023 K, respectively, are studied. They should contain 
different amounts of SiO2 precipitates of different 
shape and size but no dislocations. The sample 
characteristics are given in Table 1. Fig. 1 shows 
PendeU6sung intensity beats measured with the incli- 
nation method and 0.0392 A~ y-radiation on sample 
II.2 annealed for 70 h at 1043 K. The observed Pendel- 
16sung oscillations show the period expected from 
dynamical theory for a perfect crystal, however, they 
are approximately 50% higher than the average value 
of Rdyn(A ). The experimental data approximate a 
straight line and can be well described by a superposi- 
tion of Rdyn(A) and a term proportional to the par- 
ameter A" and thus to the effective sample thickness 
Ten.The results shown in Fig. 1 suggest that the SiO2 
precipitates do not affect the coherent wave fields 
in the crystal; they only create some weak diffuse 
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Table 1. Characterization of the (001) Czochralski- 
grown silicon crystal discs, of diameter 10 cm, which 

were annealed in an argon atmosphere 

All samples are doped with boron and their substitutional carbon 
content is less than 0.1 x 10t7C atoms cm -3. The distribution of 
dissolved oxygen shows radial symmetry with respect to the growth 
direction, but the oxygen content in sample VII varies from the 
centre to the edges of the sample: z corresponds to the centre of 
the crystal plate, r/2 to a distance half-way between the centre 
and the edge and 1"-5 to a position 0.5 cm away from the edge of  
the crystal. 

Density of 
interstitial O atoms 

Annealing Resistivity ( ×1017 cm-3) 
Sample procedure (~  cm) z r/2 r-5 

II.2 70 h at 1043K ->23 7.7 - - 
VII.1 24h at 1023K ->15 19.1 16.1 11.4 
VII.2 72 h at 1023K -> 15 18.6 16.0 11.4 
VII.3 216 h at 1023K ->15 18.1 15.8 11.5 

scattering, which adds to the integrated reflecting 
power calculated from dynamical theory. 

It is interesting to note that the total thickness of 
the sample contributes to the observed defect scatter- 
ing, whereas the integrated reflecting power related 
to the coherent part of the Bragg peak reaches its 
average value already at A = 0.5, which, in the present 
case, corresponds to a penetration depth of T-~ 
0.01 cm, i.e. if the effect of the Pendell&sung oscilla- 
tions is neglected, after correction for absorption, a 
sample with T = 0 . 0 1 c m  would show the same 
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Fig. 1. Pendell6sung intensity beats measured with 0.0392 A y- 
radiation for sample II.2 containing 7.7x I0170 atoms cm -3 
after annealing for 70 h at 1043K. Comparison is made with the 

dyn integrated reflecting power R220(A), calculated from dynamical 
theory, and its superposition with a scattering term Rdief propor- 
tional to the parameter A and thus the sample thickness. CDIFF 
is the proportionality constant. 

integrated reflecting power as a perfect crystal with 
a thickness of T = 1 cm. Therefore, the diffuse scatter- 
ing from nearly perfect crystals is very much enhanced 
with respect t o  Rdyn.  The same argument holds for 
the weak thermal diffuse scattering (TDS), which is 
defined as a fraction of the kinematical integrated 
reflecting power, Rki, OZ T. However, model calcula- 
tions showed that, for Si 220 at room temperature, 
the effect of TDS is not visible in the dependence of 
the integrated reflecting power as measured using 
0.0392 ~ y-radiation. 

Because the formation of SiO2 precipitates depends 
strongly on the oxygen concentration, which shows 
some growth-induced fluctuations in standard Cz 
silicon crystals, a certain inhomogeneity in their 
spatial distribution is expected. However, the distri- 
bution of defects in the centre of the annealed crystals 
is sufficiently homogeneous to meet the basic assump- 
tion made in statistical dynamical theory. 

Fig. 2 shows the absolute values of the integrated 
reflecting power measured with 0.0392/~ y-radiation 
on samples VII.I-VII.3, which had been annealed at 
1023 K for 24, 72 and 216 h, respectively. Data have 
been taken at reflections 220 and 440 and, after rota- 
tion of the crystal disc by 90 ° around its cylinder axis 
parallel to (001), at reflections 220 and 440. In general, 
good agreement between the pairs of {220} and {440} 
data sets is observed, which demonstrates the expec- 
ted axial symmetry in the formation of SiO2 precipi- 
tates with respect to the growth direction. For effective 
thicknesses up to 4cm, the experimental data 
approximate a straight line and, at T = 0, the fitted 
straight lines meet the values of the integrated reflect- 
ing power calculated from dynamical theory after 
averaging over the Pendelli~sung oscillations. 
Although the defect scattering is much stronger than 
in the case of sample II.2, the thickness dependence 
of the measured integrated reflecting powers can 
again be described by a superposition of R d y n ( A  ) and 
a term RdifroC Ten. The deviation from this linear 
thickness dependence of the data measured at 
effective sample thicknesses Ten > 4 cm may be caused 
by the observed lower oxygen concentration away 
from the centre of the disc-shaped samples, which 
affects the SiO2 precipitation mechanism. In the fol- 
lowing, only data for thicknesses Tef~-< 3 cm are con- 
sidered. 

The experimental data shown in Figs. 1 and 2 will 
be analysed quantitatively by applying the results 
from different approaches to statistical dynamical 
theory. The formulae used are presented in the next 
section. 

Results of statistical dynamical theory 

As mentioned in the Introduction, the foundations of 
statistical dynamical theory are due to Kato 
(1980a, b). His original expressions for the integrated 
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reflecting power, 
R Kato i : ~  - t -  ! ~  K a t o  - I -  R K a t o  

t a l c  : " t ~ ' c o h - -  X ~ m i x  - -  - - i n c  , (7) 
will be used after incorporating the corrections made 
by Guigay (1989), which do not affect the physical 
principles of the theory. Because the experimental 
data are corrected for absorption, the integrated 
reflecting power is given for the case of zero absorp- 
tion. Later, Becker & A1 Haddad (1989b, 1990) dis- 
cussed the statistical hypotheses of the theory in detail 
and proposed a self-consistent formulation of the 
problem. To distinguish their new results from the 
original ones, the following notation is introduced: 

R B&A /? B . & A  - 1 -  R . B & A  
c a l c  : Rcoh -t- (8) " - m i x  - -  - - l n c  " 

The expressions for the coherent term Rco h are iden- 
tical for the two approaches. 

The imperfect nature of the crystal enters the theory 
via the phase factor ~p(r) defined in (2). If the distor- 
tion field u(r) is not known, a statistical hypothesis 
concerning the distribution of u(r) has to be made. 
It can be discussed in terms of its probability distribu- 
tion function p(u) (Becker & A1 Haddad, 1989a). Let 
E be the quantity 

E = J" exp [2tr i l l  • u(r)]p(u) du. (9) 

Assuming that p(u) is an even function so that its 
average is zero, one can write 

E = ( 1 / V )  ~ ¢(r)  dr, (10) 
t) 

which corresponds to Kato's definition of the long- 
range-order parameter. If the displacements u are 
sufficiently random, it is reasonable to assume a 
Gaussian distribution for p(u). If p(u) is isotropic, 
one obtains the standard expression for the static 
Debye-Waller  factor, 

E=exp[-(2"rr2/3)H2(u2)],  (11) 

where (u 2) is the mean square displacement over the 
sample. The long-range-order parameter is thus 
equivalent to the static Debye-Waller  factor and E = 
1 corresponds to the case of a perfect crystal. For 
values of (I/2) 1/2 much larger than the lattice-plane 
interspacing d = 1/H, E becomes very small and can 
often be neglected. The limit E--> 0 corresponds to 
the pure 'mosaic '  crystal. 

Kato introduces a short-range-order parameter via 
the pair-correlation function f ( t ) ,  

f ( t )  = (~#*(r + t)t# (r))~, (12) 

which is defined by the ensemble average of the 
product of the phase factors at two positions in the 
sample separated by the distance t. It is assumed 
to be real and symmetric. Owing to short-range-order 
correlations, the parameter E should be modified by 
some phase fluctuations 8~, i.e. 

~o = E+8~o 

and one obtains the expression for the correlation 
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Fig. 2. Absolute values of the integrated reflecting power versus effective sample thickness Tee ~. The data are for Si samples VII.I-VII.3, 
which were annealed at 1023K for 24, 72 and 216 h, respectively. Data sets measured at reflections 220 and 220 as well as at reflections 
440 and 440 are shown. The experimental data were corrected for absorption and time decay of the y-ray source. Rdyn(220 ) and 
Rdyn(440) represent the values of the integrated reflecting power from dynamical theory for reflections 220 and 440 after averaging 
over the Pendell6sung oscillations. 
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function 

f ( t ) =  E2 + (6~o*(r + t)aq~(r)),. (13) 

Finally, one can introduce a decreasing function g(t) 
with g(0) = 1 and liml,l_.o~g(t) = 0, which describes the 
short-range phase correlation between two points sep- 
arated by the vector t, so that the full correlation 
function f ( t )  is expressed as 

f ( t )  = E 2 + (1 - E2)g(t), (14) 

with the limiting values f(0) - 1 and f(oo) = E 2. For 
simplicity, isotropy is assumed, so that f ( t )  depends 
only on Itl = t. The general shape of the correlation 
functionf(t)  is shown in Fig. 3. The correlation length 
~" is defined in any direction as 

co 

T = ~ g(t) dt. (15) 
o 

Analogously, one can define generalized correlation 
lengths z,, 

oo 

¢, = ~ g"(t) dt. (16) 
o 

The formulae derived by Kato (1980a, b) for the 
coherent ,  Reoh, the mixed, Rm~x t°, and the incoherent 

i ~  K a t o  term, --meR'~t°, of the integrated reflecting power, "'¢a1¢, 
given in (7) will now be presented. 

The coherent term is 

R¢oh = EEQTW(2EA)exp[ -2 (1 -EE)rT /A2] ,  (17) 

where r is the correlation length describing short- 
range order. This term will be determined together 

D K a t o  with the static Debye-Waller factor E by fitting "'talc 
to the experimental data. Inspection of (17) reveals 
that R¢oh is equal to Rdy n as given in (3) for E = 1 
and zero absorption. For E < 1 and r > 0, an exponen- 
tial damping of the integrated reflecting power with 
sample thickness T becomes effective. Furthermore, 
the Pendell6sung period and the extinction length are 
both increased by the factor 1/E owing to the 

f(t) 
1 .0  - 
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Fig. 3. Correlation function f(t) for E = 0.5 and g(t) = exp (-t/z) 
with ~" = 2. 

modification of the upper bound of the Waller integral 
from 2A to 2AE. In the case of negligible short-range 
correlation, i.e. ~"--0, the damping term disappears 
and only the increase of the Pendell6sung period 
remains. 

The incoherent term is 

R ~  t°= [(1 - E2)/2re]QA 2 ½[ 1 - e x p  ( -4reT/A  2) 1 

with ~'e=(1-E2)~'+E2F, (18) 

where F = A / E  represents the correlation length for 
the wave-field amplitudes. It was assumed to be much 
larger than r and constant within the sample. Further- 
more, Kato assumed that F is proportional to the 
extinction length, i.e. it scales with the wavelength 
and the structure factor. 

The mixed term is 

RK~x t°= E ( 1 -  E2)½QA[½(mKlat°+ mKat°) - nKat°]. 

(19) 

The expressions for m~ at°, - K=o and _K~to m2 n2 are given 
in (32) and (33) of Kato (1980b). 

Becker & A1 Haddad (1989b, 1990) revised Kato's 
original approach to statistical dynamical theory and 
showed that the correlation length F for the wave- 
field amplitudes is variable within the sample and 
that it fluctuates around a value of the order of the 
short-range-correlation length ~-, rather than being 
constant and of the order of the extinction length A, 
as proposed with some reservation by Kato (1980a). 
The expression i~B&A • -=it given by Becker & A1 Haddad 
(1989b, 1990) describes very well the thickness depen- 
dence of the integrated reflecting power measured 
with 0.0392 A y-radiation in Cz-grown Si crystals 
annealed at 1023 K and are therefore presented next. 

The incoherent term is 

RB&A inc =(1/2~'2)QA2½{1-exp [-4(1-E2)7"2T/A2]} 

with ~'2 = z/2. (20) 

g(t) is assumed to be of the exponential form 
exp ( - t~  7"), with the correlation length % so that the 
correlation length of gE(t) is equal to z2 = ~'/2. 

The mixed term is 

Rami &A= ½0"(1 - EE)E2Q[4tz2a(Z 1 +½Z2) + y Z  3 

-a(21x2nl + an2)+(1 + 2/x2a)n3+ n4], (21a) 

with 

o" = 2 r /A  2 , 

/x2 = (1 - E2)2~'2/A 2, 

ot = 21/2E/A, 

a = 2~-c~2/(a2+4tz2), 

y = [ a ( a  2 _ 4/~ 2) _ 2~-a 2]/(2/x2) - 2, 

(21b) 

(21c) 

(21d) 

(21e) 

(21f) 
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2 2 -2  2 ( a T )  ill ---- ( a  ÷/ 'g  e) [(/'L e -- 0~2) cOS 

+ 2/~eO~ sin ( a T ) -  ( /z2-  a 2) exp (--/,LET) 

--/~eT(/~ 2 + a 2) e x p  ( - ~ T ) ] ,  ( 2 1 g )  

~- 2 2 --2 2 n2 (a  +/z ~) [ (/x ~ - a 2) sin (a  T) 

- 2/z~a cos (aT)  + 21~ot exp (-/xeT) 

+ aT(tz~ + a 2) exp (-/xeT)], 

n3 =½T 2 exp (-/z~T) provided z2 = r /2 ,  

FI 4 

['~ e -"  

Z 1 = 

z~= 

/~= 

(21h) 

(21i) 
- 2  

[~e - (  T/ tze-t-1/ tz2) exp (-tzeT), ( 2 1 j )  

(1 -E2)2~ . /A  2, (21k) 

2 --1 (aT)+/~els sin (aT)  ( Ol 2 ÷ / ' g  e )  []'l'eIc C O S  

+ aI~ sin (aT)  - od~ cos (aT)  

- /x~T exp (-/xeT) W(2EA)] ,  (21/) 
(Of 2 .~_ 2 --1 tx~) [l~eIc sin (otT)- tZeIs  COS (aT)  

- a I ¢  cos ( a T ) - a I ~  sin (aT)  

+ a T  exp (-IJCeT) W ( 2 E A ) ] ,  (21m) 
T 

exp( - tXe t )Jo(2Et /A)cos (oz t )d t ,  (21n) 
0 

T 

Is=~ e x p ( - / X e t ) J o ( 2 E t / A ) s i n ( a t ) d t ,  (21o) 
0 

T 

Z3 = j exp (- /zeT)  W ( E E t / A ) t  dt. (21p) 
o 

The calculation of the quantities Z1, Z2 and Z3 in- 
volves the evaluation of integrals that are solved 
numerically. 

In the limit of small values of the correlation length 
i~B&A the much ~', i.e. z /A->0 ,  one obtains from "'ca~ 

simpler asymptotic formula 

R a s y m ~  R¢oh+ Ra&A Q T [ E E W ( 2 E A ) + ( 1  - E2)]. ca l c  = - i n c  

(22) 

The same expression is obtained from Kato's original 
theory for r = F = 0 .  In this limit the physics is 
evident. The value of the structure factor Fn is 
reduced by the static Debye-Waller factor E, which 
leads to an increase of the Pendellrsung period. If 
the definition of W(2EA)  from (4) is taken into 
account, the average value of Rdyn(A) is proportional 
to Fn and is thus reduced by the factor E. As sug- 
gested in the qualitative discussion of the data presen- 
ted in Fig. 1, the defect scattering is proportional to 
the thickness and has the weight ( 1 -  E2) .  

Experimental data v e r s u s  theory 

To compare the experimental data shown in Figs. 1 
and 2 with theory, various theoretical expressions for 
the integrated reflecting power have been imple- 
mented as subroutines in the standard-fit program 
M I N U I T  (James & Roos, 1975). The function mini- 

mized in this program is 
N 

X 2 Z ~ i ~ 2 = [ (Robs - nc,,c) / ~obs]. 
i = 1  

(23) 

N is the number of observations, i.e. the number of 
Robs different tilt angles 0i at which the reflectivities i 

is the standard deviation of Robs, were measured. O'ob s 

essentially derived from counting statistics. The 
quality of the fit is described as usual with the good- 
ness of fit, GOF, and the reliability factor, R, defined 
as  

G O F = x 2 / ( N - p )  
and (24) 

R = obs O ' o b s  • 
i 1 

p is the number of free parameters in the fit; GOF = 1 
is expected for the best possible fit. 

The performance of the various approaches to 
statistical dynamical theory has been studied using 
the data for sample 11.2 and shown in Fig. 1 since in 
this case Pendellrsung oscillations are clearly visible. 
Kato's original formula, (7), with (17)-(19), repro- 
duces the experimental data rather well. However, a 
significant difference in the slopes of the lines corre- 
sponding to the experimental and theoretical data is 
observed. The main concern is that the slope for ,,LcalcDKat° 
is almost exclusively caused by the mixed term RmK~ t°, 
whereas, from physical arguments, R ~  t° should be 
dominant. Following the suggestion made by Takama 
et al. (1990), Kato's original formulae were changed 
by introducing the correlation length for the wave- 
field amplitudes, F, as an additional free fitting 
parameter. As shown in Fig. 4, a good fit to the 
experimental data was obtained. The resulting values, 
r =  1 (1)t~m and F = 0 . 5  (8) t tm do not differ sig- 
nificantly from zero. In any case, F is much smaller 
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Fig. 4. A free fit of --~c°r~t° ,u*- the experimental data for sample 11.2 
(the same as in Fig. 1), introducing the correlation length of the 
wave-field amplitudes, F, as an additional free parameter. The 
best fit was obtained for the parameter values: E = 0.99762 (14), 
z = l  (1) tLm and F = 0 . 5  (8) ttm. GOF=2.1 ,  R =2.2%. 
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o K a t n / A 3  Table  2. Results fromfitting the theoretical integrated reflecting power due to Kato (1980a,  b),  "'~alc ~ J  [(7) 
and (17) - (19) ] ,  and to Becket & Al Haddad (1989b) ,  R&A R~,l¢ (A)  [(8),  (17) and (10) - (22) ] ,  to the experimental 

data for sample 11.2 

The quality of the fit is characterized by the GOF and the reliability factor R defined in (24). E is the static Debye-Waller factor, 7- 
the correlation length describing short-range correlation [(15)], A is the extinction length [(5c)] and F the correlation length for the 
wave-field amplitudes [(18b)]. 

Fitting parameters 
Quality of fit 

Fig. E ~'/A F(~m) GOF R(%) 
Kato (1980a, b) 4 0.9978 (4) 0.04 (1) - 4.8 3.3 

0.99762 (14) 0.005 (6) 0.5 (8) 2.1 2.2 
Becker & AI Haddad (1989b) 5 0.9977 (1) 0.0013 (11) - 2.1 2.2 

0.99758 (1) Fixed at 0.0 - 2.1 2.2 

than the value of the extinction length for Si 220 and 
0.0392 A y-radiation of A = 216 Ixm. It is also inter- 

R Kato .~ R Kato esting to note  tha t  --inc ----mix now,  as expec ted  
f rom phys ica l  a rgument s .  The results  o f  the two fits 
ba sed  on K a t o ' s  a p p r o a c h  to statist ical  d y n a m i c a l  
theory  are s u m m a r i z e d  in Table  2. 

The s ame  expe r imen ta l  da t a  have  been  fitted with 
the theore t ica l  express ion  Jt~,calcOB&A der ived by Becker  & 
Al H a d d a d  (1989b, 1990), which  conta ins  only  the 
two p a r a m e t e r s  E a n d  ~-/A to be de t e rmined  by the  
fitting p rocedure .  As d e m o n s t r a t e d  in Fig. 5, this 
theory  closely descr ibes  the  expe r imen ta l  da t a  now 
R B&A. R.B&A mix "" --,n¢ • The numer ica l  values  ob t a ined  for  the 
two p a r a m e t e r s  tha t  de te rmine  the cor re la t ion  func-  
t ion f ( t )  are E = 0 . 9 9 7 7  (1) and  r / A = 0 . 0 0 1 3  (11), 
i.e. r = 0 . 3  lxm. The va lue  for  ~'/A is close to zero 
because  o f  the  large va lue  o f  the ext inct ion length 
due  to the  shor t  wave leng th  o f  the y - r a d i a t i o n  used.  
There fore ,  it is just i f ied to app ly  (22), the a sympto t i c  

DB&A for  ~'/A = 0, to the present  expe r imen ta l  f o rm of  ,Xcalc 
da t a  set. The  qual i ty  o f  the fit, which  con ta ins  only 
one  free p a r a m e t e r ,  the static D e b y e - W a l l e r  fac to r  
E, is as good  as tha t  ob t a ined  for  the full f o r m u l a  
R B&A. ca~c, the numerical value of E = 0.99758 (1) agrees 

within statistical accuracy with that obtained from 
fitting the full formula. 

Determination of static Debye--Waller factors 

As shown in Fig. 2, the defect  scat ter ing f rom the Si 
crystals  V I I . I - V I I . 3  con ta in ing  abou t  1 8 x  1017 O 
a toms  cm -3 a n d  a n n e a l e d  at 1023 K is m u c h  s t ronger  
than  in the  case  o f  sample  II.2 d iscussed earl ier .  Since 
the a m p l i t u d e  o f  the PendellSsung osci l la t ions  is o f  
the o rde r  o f  10% of  the  average  value o f  the  in tegra ted  
reflecting p o w e r  Rdyn(A ) o f  a perfect  crystal ,  it is only 
of  the o rde r  o f  1% of  the  in tegra ted  reflecting p o w e r  
m e a s u r e d  for  samples  VII  and  is thus  not  easi ly 
observed.  There fore ,  the  effective crystal  th ickness  
was var ied  in the range  f rom 1 to 5 cm in steps o f  
1 mm,  ins tead  o f  looking  for  PendeU&sung osci l la t ions  
in a r a the r  small  th ickness  range.  

At first, the  full f o r m u l a  for  oB~A f rom Becker  & ,tXcalc 

A1 H a d d a d  (1989b, 1990) was  fitted to the  (220) da t a  
for  sample  VII .1.  Subsequen t ly ,  since the  resul t ing 
value of  r / A  was  equal  to zero within statist ical  error ,  
the a sympto t i c  express ion  i~asym • Xcalc was fitted to these  
data .  The result  is p resen ted  in Fig. 6. The  fit is 

0.8 . i . = . i , i , , . , . 

L o .  6 

o Rc0h • 

~ 0.4 

g 

~ 0.2 Rinc , ~  

Rmix 
0.0 

0 10 20 30 40 50 60 70 

A 

Fig. 5. A free fit of aSiA R~¢ to the experimental data for sample II.2 
(the same as in Fig. 1). The two parameters defining the correla- 
tion functionf(t) are determined to be E = 0.9977(1) and ~'/A = 
0.0013 (11). GOF= 2.1, R =2.2%. 
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g. 6 
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o o O  ° 

° o °  
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. ~ ~  Rmix = 0 

j j  R~o. 
/ _ J _  , i r i 
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Fig. 6. A free fit of the asymptotic formula °asym of the Becker & ,-~lc 
AI Haddad theory for ~'/A =0 to the experimental data for 
sample VII.1 (the same as in Fig. 2). The static Debye-Waller 
factor was determined to be E = 0.9755 (1). GOF = 0.6, R = 1.8%. 
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Table 3. Results from fitting the asymptotic formula of 
Becket & Al Haddad (1989b), Dasym/A~ "'¢alc ~ J  [(22)], to the 
thickness dependence of the integrated reflecting power 
measured for reflections 220 and 440 of samples I1.2 

and VII.I-VII.3 

The quality of the fit is characterized by the GOF and the reliability 
factor R defined in (24). E is the static Debye-Waller factor. 

220 440 

Sample E GOF R(%) E 
11.2 0.99758 (1) 2.1 2.2 - 

VII.1 0.9755 (1) 0.6 1.8 0.9146 (2) 
VII.2 0.9648 (1) 0.2 1.2 0.8832 (2) 
VII.3 0.9559 (1) 0.4 1.5 0.8569 (3) 

GOF R(%) 

7.2 2.6 
7.0 2.6 

10.3 3.2 

extremely good and, as expected, the obtained value 
of the static Debye-Waller  factor, E = 0.9755 (1), is 
smaller than in the case of sample II.2. To determine 
static Debye-Waller  factors for samples VII.I-VII.3,  
the asymptotic formula Dasym "'talc of Becker & AI Haddad 
(1989b, 1990) [(22)] had therefore been fitted to all 
the data sets shown in Fig. 2. The results of these fits 
are summarized in Table 3. It is known from small- 
angle neutron scattering (Messoloras et al., 1989) that, 
at 1023 K, the size of the SiO2 precipitates increases 
with annealing time, which leads to an increase of 
the diffuse scattering and a decrease of the values of 
the static Debye-Waller  factors E as observed in the 
experimental data presented in Table 3 (Bouchard, 
Schneider, Gupta,  Messoloras, Stewart, Nagasawa & 
Zulehner, 1992). 

In the framework of their X-ray PendellSsung study 
of structure factors of silicon, Aldred & Hart (1973) 
also deduce a thermal parameter B=0.4613 A2 at 
293.2 K from the thermal Debye-Waller  factor 

T D W F = e x p ( - M ) = e x p [ - B ( s i n  0B/A)2], (25) 

For reflections 220 and 440, one obtains T D W F =  
0.9692 and 0.8824, respectively. These values are of 
the same order of magnitude as those for the static 
Debye-Waller  factors E obtained via statistical 
dynamical theory for samples VII.I-VII.3,  which 
means that the total amount of diffuse scattering 
should be similar in the two cases. On the other hand, 
it has been shown by Graf  & Schneider (1986) that 
the contribution of thermal diffuse scattering to the 
integrated reflecting power is negligible in Pendel- 
15sung beat measurements with 316 keV y-radiation 
at low-order reflections. The fact that a significant 
amount of  diffuse scattering is found in the annealed 
silicon crystals must therefore be due to a localization 
of the diffuse scattering in k space around the 
reciprocal-lattice point, caused by the formation of 
defect clusters. Fig. 7 shows iso-intensity contours as 
measured at room temperature for sample VII.2 with 
a high-resolution three-crystal Laue diffractometer 
(Siddons, Hastings, Schneider & Berman, 1989) using 

synchrotron radiation with energies around 150 keV 
from the DORIS storage ring at HASYLAB. The 
diffuse scattering is concentrated within a distance of 
the order of 10 -3/~k -1 from the 220 reciprocal-lattice 
point. A quantitative analysis of double-crystal y-ray 
rocking curves reveals that this corresponds to a 
cluster radius of the order of 2000 A (Bouchard et 
al., 1992). The fine structure in the iso-intensity con- 
tours in the narrow stripe approximately 2 x 10 -5 /~-  
wide and parallel to H22o is due to the resolution 
function of a three-crystal diffractometer in Laue 
geometry (Neumann,  Schneider & Nagasawa, 1991). 

Such large clusters cannot be brought into line with 
the results from small-angle neutron scattering with 
regard to the size of SiO2 precipitates in silicon, which 
contains approximately 18 x 1017 O atoms cm-3 and 
which was subject to annealing for several hours at 
1023 K. The following working hypothesis is thus 
adopted for the interpretation of the static Debye-  
Waller factors determined for samples VII.I-VII.3: 
firstly, compact precipitates of amorphous SiO2 are 
formed and reach dimensions of the order of 40 ~ ;  
these precipitates then become grouped in loosely 
packed clusters with dimensions of the order of 
4000 A. This hypothesis can be verified using the 
theory of diffuse X-ray scattering and its application 
to the study of point defects and their clusters as 
described by Dederichs (1973). 
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Fig. 7. Iso-intensity contour plot measured around reflection 220 
for sample VII.2 using a high-resolution three-crystal dittrac- 
tometer operated with 150 keV synchrotron radiation. 
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Table 4. Radii, in A, of spherical SiO2 precipitates in samples VII.I-VII.3, 
measured directly by means of small-angle neutron scattering (SANS) and deduced 

from the static Debye- Waller factors listed in Table 3 

The deduced  values are different depending on the assumpt ion concerning the nature of  the SiO2 
precipitate. The precipitates are significantly larger if  they are assumed to be in the form of  amorphous  
quartz instead o f  coesite, a high-pressure form of  quartz. 

y-ray diffractometry 

Sample SANS 

VII.1 17 (3) 
VII.2 18 (3) 
VII.3 22 (3) 

Amorphous  
Coesite Cristobalite quartz 

Vsio2 = 34.13 A 3. VSiOe = 43.48 A 3 Vsio2 = 43.02 Aa t  
e = -0.0518 e = 0.0279 e = 0.0242 

9.9 (8) 18.3 (14) 21.1 (16) 
11.7 (9) 21.7 (17) 25.0 (19) 
12.3 (6) 22.9 (I1) 26.3 (13) 

* Licbau (1985). 
t Livingston et al. (1984). 

Determination of the size of Si02 clusters from static 
Debye-Waller factors 

The number density of the SiO2 precipitates is 
assumed to be sufficiently small that the single-defect 
approximation can be used in the calculation of the 
static Debye-Waller factor due to their displacement 
field. Since the SiO2 molecules are densely packed 
inside the cluster, the static Debye-Waller factor is 
calculated according to (Dederichs, 1973) 

SDWF = E = exp ( - L ~  e¢) 

with (26) 

t~-[ec = (8Cel/Vcell) I {1 - c o s  [H .  u(r)]} dr. 

c¢~ is the ratio of the number density of the precipitates 
to the number density of the matrix atoms. Owing to 
the large displacements u(r) in the vicinity of the 
clusters, the cosine cannot be expanded and, unlike 
the thermal Debye-Waller factor defined in (25), LH 
is not proportional to [(sin 0B)/A ]2. According to Iida 
et al. (1988), the displacement field u(r) around a 
spherical precipitate in an isotropic medium can be 
written as 

u(r)={ er Irl-< R°' (27) 
(egg/ra)r rl>- g0, 

where Ro is the radius of the precipitate and e rep- 
resents the strain parameter. Since one SiO2 molecule 
replaces two Si atoms in the crystal, the strain param- 
eter is fixed by the following relation between the 
volume of the precipitated SiO2 molecule, Vsio2, and 
the volume of one Si atom, i.e. one eighth of the 
unit-cell volume, V¢~,, 

(I + e)3=4 Vsio2/V~o,l. (28) 

Vsio2 is subject to the nature of the precipitates. If 
SiO2 precipitates as coesite, one obtains Vsio2 = 
34.13 A 3 (Liebau, 1985). If it precipitates in the form 

of amorphous quartz, one has to u s e  Vsio2 = 43.02 A 3 
(Livingston et al., 1984). After substitution of (27) 
into (26), Iida et al. (1988) obtain 

F 
L~e¢(A) = (8c¢~V/V¢~n) [ 1 + (3/A3)(A cos A - s i n  A) 

+ 3 I {1-  [sin (A/x~)]/(A/x~)Ix~ dx 
1 

(29) 

where 

A=HeRo,  x = r / R o ,  V=(4~r/3)R3o. 

Equation (29) describes the situation where the SiO2 
precipitates are uniformly distributed in the crystal. 
If they form groups of precipitates, for example, No1 
precipitates are confined in a sphere of radius R¢l, 
then L~e¢(A) has to be multiplied by a large factor, 
which is independent of the scattering vector H. As 
will be shown in a future paper (Bouchard et al., 
1992) the clusters of radius R¢~ are formed by weakly 
interacting precipitates of radius Ro << Rc~ so that their 
displacement fields superimpose. In this case, one 
obtains for the static Debye-Waller factor of the 
clustered system (Dederichs, 1973) 

L ~ = [ I +  N¢I(Ro/Rcl)]L~ ec. (30) 

Since the static Debye-Waller factor has been deter- 
mined for samples VII.I-VII.3 and reflections 220 
and 440, the radius of the SiO2 precipitates can be 
determined from the ratio ¢1 d L(44o}( eRo)/ L{22o}( eRo) for 
a given value of e, as all factors involving number 
densities or the radius of the large clusters cancel. 
The results presented in Table 4 show very good 
agreement between the radii of the SiO2 precipitates 
deduced from the static Debye-Waller factors and 
the values directly determined by means of small- 
angle neutron scattering. As expected, the agreement 
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is better for the assumption that SiO2 precipitates in 
the form of amorphous quartz or cristobalite. 

Concluding remarks 

The contribution of thermal diffuse scattering to the 
integrated reflecting power is very weak in measure- 
ments using 316 keV y-radiation. This is due to the 
wide distribution of TDS in k space and the special 
resolution element in y-ray diffractometry, which is 
a thin disc of large dimensions perpendicular to the 
scan direction. The values of the thermal and static 
Debye-Waller factors are of the same order and there- 
fore the total amount of defect scattering should be 
comparable to that of TDS. The fact that the defect 
scattering could be measured by means of y-ray 
diffractometry suggests that the defect scattering is 
rather localized in k space around the reciprocal- 
lattice vector, which has been verified by mapping 
the diffuse scattering around 0220 with a high-resol- 
ution Laue-case three-crystal diffractometer operated 
with 150keV synchrotron radiation. As a con- 
sequence, only clustered SiO2 molecules contribute 
to the integrated reflecting power measured by means 
of y-ray diffractometry and the contribution of small 
defects will most probably disappear in the back- 
ground of the measured rocking curve. In the present 
case, two models of clustering must be considered. 
In sample II.2 the SiO2 molecules form large plate- 
shaped precipitates of approximate dimensions 280 x 
280x22 ]k. These precipitates cause a sufficiently 
strong long-range strain field to concentrate a sub- 
stantial amount of diffuse scattering around the 
reciprocal-lattice point. In samples VII.I-VII.3 the 
SiO2 precipitates are spherical with diameters of the 
order of only 40 ]k. This should result in a weaker 
diffuse scattering extended further into k space, the 
contribution of diffuse scattering to the measured 
integrated reflecting power should be smaller than in 
the case of sample II.2. However, the contrary was 
observed. The defect scattering from samples VII. l-  
VII.3 is much stronger and this cannot be explained 
by their higher oxygen content. Instead, it is suggested 
that the relatively small SiO2 precipitates are loosely 
bound within large clusters that create the long-range 
strain field leading to the contraction of a large 
amount of defect scattering around the reciprocal- 
lattice points. 

A comparison of the results of statistical dynamical 
theory with the experimental data for sample II.2 
reveals that the incoherent term of the integrated 
reflecting power, calculated from Kato's original for- 
mula, is very small. The defect scattering is almost 
completely described via the mixed term, which is 
against physical intuition. If the correlation length F 
for the wave-field amplitudes is introduced as an 
additional free fitting parameter, the experimental 
data are well described. The incoherent term of the 

calculated integrated reflecting power is now larger 
than the mixed term. In contrast to Kato's original 
suggestion, F is of the same order of magnitude as ~" 
and much smaller than the extinction length A for 
Si 220 and 316 keV y-radiation. 

The expression for the integrated reflecting power 
calculated by Becker & A1 Haddad (1989b, 1990) 
within the framework of statistical dynamical theory 
describes the experimental data very well. A fit of the 
full formula shows that the parameter ~" is very small. 
This means that the crystal imperfections can be 
characterized by the static Debye-Waller factor alone. 
The asymptotic formula for ~" = 0 describes the experi- 
mental data equally well and allows a unique determi- 
nation of the static DWF from the measured thickness 
dependence of the integrated reflecting power. The 
ratio of the static DWF determined for reflections 220 
and 440 provides the product of the strain parameter 
e and the radius R0 of the SiO2 precipitates, which 
have been assumed to be spherical in agreement with 
the results from small-angle neutron scattering. The 
R0 values determined directly from SANS are within 
the limits of the precipitate size deduced from the 
static DWF using the values of the strain parameter 
for the possibilities that SiO2 precipitates in the form 
of cristobalite or amorphous quartz. This excellent 
agreement is in strong support of statistical dynamical 
theory in the version presented by Becker & A1 
Haddad (1989b, 1990). 

In spite of the success of the statistical dynamical 
theory in the interpretation of the integrated reflecting 
power measured with 316keV y-radiation for 
Czochralski-grown dislocation-free silicon crystals, 
one has to admit that the distribution of precipitates 
in an otherwise perfect crystal is probably the simplest 
type of defect structure to be treated by such a theory. 
At these short wavelengths, the Bragg peak related 
to the coherent scattering is highly localized in k space 
and the overlap with the diffuse scattering, despite it 
being confined to an area of dimensions only 
10 -3 ]k -i, is very small. This is also the probable cause 
of the mixed term of the calculated integrated reflect- 
ing power being negligible compared with the coher- 
ent and incoherent terms. Investigations of silicon 
crystals annealed at temperatures above 1173 K rep- 
resent a more stringent test of statistical dynamical 
theory, because here dislocations and/or  stacking 
faults are formed in addition to large SiO2 precipitates 
and short-range correlation should be crucial for the 
diffraction process. A recent paper by Kato (1991) 
gives a more rigorous foundation of the statistical 
dynamical theory of diffraction, which is intended to 
provide the basis of more practical theories for 
specific topics to be developed in the future. 

Thanks are due to Dr W. Zulehner from Wacker- 
Chemitronic GmbH, Burghausen, for providing the 
silicon samples. 
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Abstract 

The coherent terms in the spherical-wave approach 
of the statistical dynamical theory are reformulated 
using rigorous boundary conditions in contrast to the 
intuitive boundary conditions of the original formula- 
tion by Kato [Acta Cryst. (1980), A36, 763-769, 770- 
778]. These boundary conditions are explained physi- 
cally by a general interference effect between the 
forward-diffracted wave and the incident undiffracted 
wave (using the optical theorem) and their con- 
sequences on the total (Bragg and forward-diffracted) 
incoherent intensity are also discussed. 

1. Introduction 

The statistical dynamical theory (SDT) of Bragg 
diffraction by randomly distorted crystals, first formu- 
lated by Kato (1980a, b), can be divided into two 
parts. Only the first part, consisting in the calculation 
of the so-called coherent waves diffracted into the 
Bragg and forward directions, will be considered 
explicitly in the present paper. Even in the case of a 
nonabsorbing crystal, these coherent waves lose 
intensity, which is transferred to the incoherent beams 
calculated in the second part of the theory. We shall 
consider the case of a nonabsorbing crystal with a 
centrosymmetrical structure, in Laue symmetrical 
conditions. Our purpose is to reveal the differences 
between our approach and the previous one by Kato 
(1980a, b) and by A1 Haddad & Becker (1988), Becker 
& A1-Haddad (1989, 1990, 1992). This is particularly 
clear when the static Debye-Waller factor is equal to 
zero; in the previous approach there are then no 
coherent diffracted intensities at all but in our 
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approach there is indeed some coherent intensity in 
the forward-diffracted beam. 

The present paper deals with the point-source func- 
tions (PSF) that represent the coherent waves gener- 
ated by a point source on the entrance surface of the 
crystal (this is known as a 'spherical wave'). A slightly 
different form of the differential equations satisfied 
by the coherent PSF is proposed and special attention 
is paid to the boundary conditions which must be in 
agreement with the usual dynamical theory of diffrac- 
tion by perfect and by nonrandomly deformed crys- 
tals. We show that the transmitted wave is not affected 
by the random distortion of the crystal in a narrow 
region close to the direction of the undiffracted wave. 
This has a physically meaningful consequence: the 
transmitted intensity is reduced by interference 
between the undiffracted wave and the forward- 
diffracted wave, this reduction being compensated 
for in the total diffracted intensity (this is simply a 
statement of the 'optical theorem' described in most 
textbooks on quantum mechanics). 

Our results for the coherent PSF are in agreement 
with the paper by Polyakov, Chukhovskii & Piskunov 
(1991) and it is proposed to use a similar approach 
for the calculation of incoherent beams. This is dis- 
cussed here and will be the topic of forthcoming 
papers. 

2. The PSF in diffraction by a distorted crystal 

Let O be a point source on the entrance surface of 
the crystal; we shall use the nonorthogonal coordinate 
system (OSo, OSh) shown in Fig. 1. Let Gh(so, Sh) 
and God(So, S h) be the amplitudes of the Bragg- 
diffracted and forward-diffracted waves respectively. 
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